令和4年度補正予算「省エネルギー投資促進・需要構造転換支援事業費補助金」 「先進事業」における『先進設備・システム』公開用概要書

製造会社情報(コンソーシアムの場合は、幹事社)

設備/システム名	ガスタービンコージェネレーションシステム
型番	CNT-60C
会社名	株式会社IHI原動機
本社所在地	東京都千代田区外神田二丁目14番5号
会社WEBページURL	https://www.ihi.co.jp/ips/indexj.html
製品紹介ページURL	https://www.ihi.co.jp/ips/products_land/niigata/gasturbine_c.html

製品についてのお問い合わせ先

`击级 件	株式会社IHI原動機 陸用事業部 営業統括部 第1営業部 〒101-0021 東京都千代田区外神田二丁目14番5号 TEL:03-4366-1256
-------	--

登録設備情報

導入可能な主な業種・分野	E. 製造業			
導入対象となる分野・プロセス	・電力及び蒸気等の熱需要の大きい繊維,化学,食品,製紙工場 ・石炭,重油等からガスへ燃料転換することで環境負荷低減を図れるプロセス			
導入事例の省エネ量 (原油換算:kl)			7282	k1/年
工場・事業場当たりの想定省エネ率	_			%
設備・システム当たりの想定省エネ率	19. 9			%
導入事例における費用対効果 (年間)	74. 3			kl/千万円
1台又は1式当たりの想定導入価格(参考)			個別対応	円
保守・メンテナンス等の年間ランニング費用			個別対応	円/年

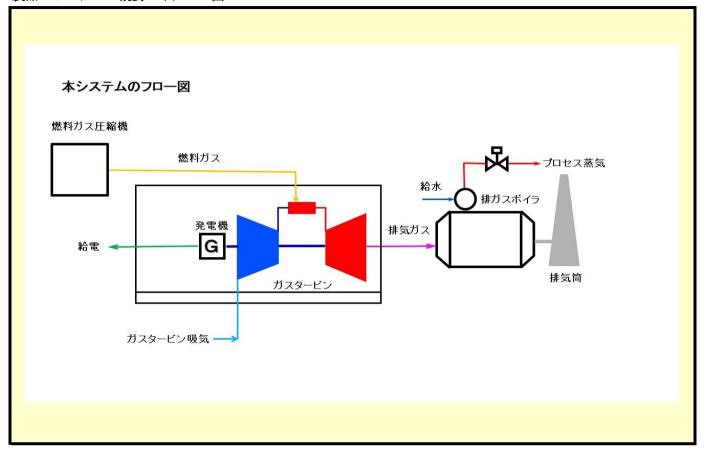
製品・システムの概要

ガスタービンは他の原動機に比べて小型、軽量でありながら大出力を取り出せる特徴があり、高温の排気ガスが 多量に発生することから排熱ボイラ等により排熱回収を行うことで高い総合効率を得ることが可能である。そのため、蒸気や温水といった熱需要の大きい繊維、化学、食品、製紙工場向けに適したコージェネレーションシステムである。

本設備CNT-60Cコージェネレーションシステムは原動機として中型産業用ガスタービンにおいて世界トップクラスの実績を持つ米国Solar Turbines社の型式TAURUS70Sを用いている。本設備は上記業種の工場向けで電力需要の多い8MWクラスで最も高い発電効率33.7%を達成し、その発電効率の高さにより同出力クラスの希薄予混合燃焼ガスタービンコージェネレーションとして、「環境省LD-Tech」*の認証申請を行っている。本設備の導入により系統電力及び重油焚きボイラを使用している工場において、エネルギー消費量4987kL/年(削減率20.5%)、C02排出量25000t/年(削減率40%)を削減し省エネルギー、環境負荷低減に寄与することが可能となる。

*環境省LD-Tech (Leading Decarbonization Technology)は環境省が2050年カーボンニュートラルに向け、エネルギー起源CO2の排出削減に最大の効果をもたらす先導的な技術として整理し普及を推進するものです。

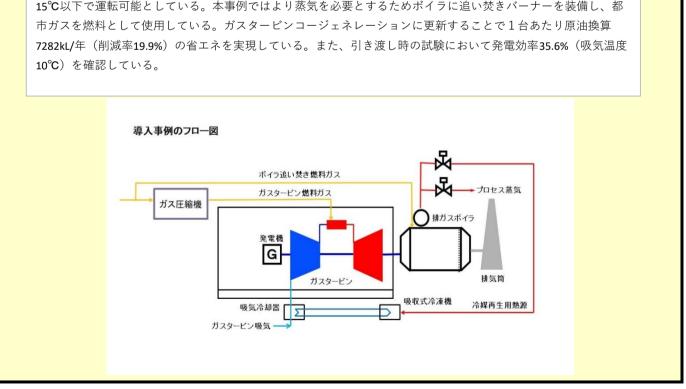
先進性についての説明


<タービン>

、 ガスタービンはタービン入口温度を上昇させることで熱効率が向上する。耐久性と両立させるためタービン翼の耐熱コーティング厚さを熱解析 及び試験により最適化している。また、タービン作動流体エネルギーの損失を削減するためタービン翼チップクリアランスを極小化したシール を採用しタービン効率を向上させている。

流体解析を用いて燃料と空気の混合を希薄、均一化するため燃料噴射口周りの空気通路形状を最適化、一体鋳造成形とすることで形状のばらつ きを削減している。これによりNoxを増加させずタービン入口温度を上げて熱効率を向上させることが可能である。また、Noxを抑制するため燃 料の希薄化を拡大すると燃焼振動が発生し易くなるが、燃焼解析と要素試験により燃料噴射制御の最適化を行い燃焼振動を防止している。 <燃焼器>

燃焼温度の上昇に伴い燃焼器内壁の冷却強化が必要であるが、冷却空気の増加はタービンの作動流体エネルギーの損失に繋がるだけでなく、冷却箇所でCO、UHCといった排出物が生成されやすくなる。熱流体連成解析を用いて冷却空気を増加させず内壁の対流冷却を最適化し耐久性確保とエミッション低減を両立させている。


製品・システムの概要・イメージ図

導入事例の概要・イメージ図

業種 • 分野 化学工場 対象設備・プロセス 発電・蒸気供給

電力は一般電気事業者から購入し蒸気は重油焚きボイラにより供給していた工場に2台導入し、重油焚きボイラ を廃止した。吸気温度が高い夏季にガスタービン出力が低下するため吸気冷却器を設置し年間を通して吸気温度 15℃以下で運転可能としている。本事例ではより蒸気を必要とするためボイラに追い焚きバーナーを装備し、都

