令和5年度補正予算「省エネルギー投資促進・需要構造転換支援事業費補助金」 「工場・事業場型」における『先進設備・システム』公開用概要書

製造会社情報(コンソーシアムの場合は、幹事社)

設備/システム名	KU30GSIガスエンジン発電システム
型番	発電効率重視仕様KU30GSI
会社名	三菱重工エンジン&ターボチャージャ株式会社
本社所在地	神奈川県相模原市中央区田名3000番地
会社WEBページURL	https://www.mhi.com/jp/group/mhiet/
製品紹介ページURL	https://www.mhi.com/jp/catalog/pdf/gasengine_jp_catalog_2023.pdf

製品についてのお問い合わせ先

三菱重工エンジン&ターボチャージャ株式会社 エンジン・エナジー事業部 営業部 プロジェクト課 郵便番号: 252-5293 : 神奈川県相模原市中央区田名3000番地 TEL: 042-761-2056 FAX: 042-761-8051

登録設備情報

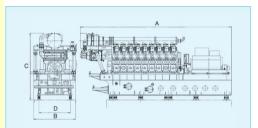
導入可能な主な業種・分野	E. 製造業	F. 電気・ガス・熱供給・水道業		
導入対象となる分野・プロセス	工場に電力、蒸気等を供	給する熱源供給設備		
導入事例の省エネ量(原油換算:kl)			1953. 0	kl/年
工場・事業場当たりの想定省エネ率			8. 2	%
設備・システム当たりの想定省エネ率			16. 9	%
導入事例における費用対効果(年間)			20.0	kl/千万円
1台又は1式当たりの想定導入価格(参考)				円
保守・メンテナンス等の年間ランニング費用				円/年

製品・システムの概要

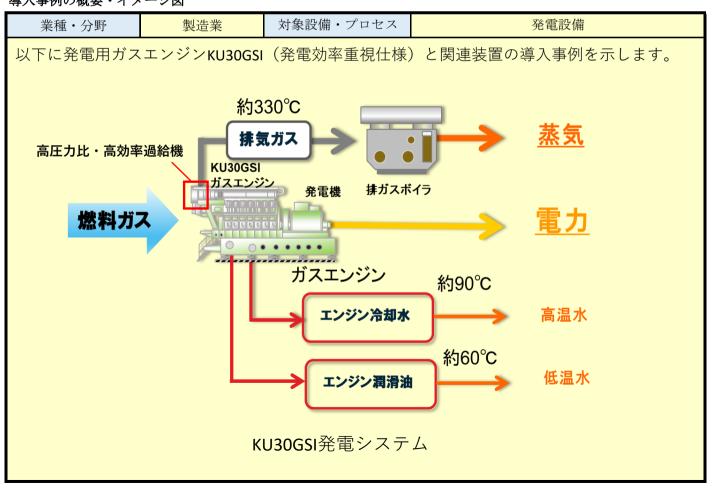
三菱KUガスエンジンは、都市ガスや天然ガスを燃料とした発電用ガスエンジンです。 発電効率重視仕様KU30GSI(以下、KU30GSIと記載する)は、納入実績が約230台の三菱KUガス エンジンシリーズの最新機種です。

KU30GSI発電システムは、エンジン本体と発電機、排ガスボイラー、補機、制御機器から構成されています。電力と余剰エネルギーから発生する蒸気の利用効率に配慮した発電システムです。

先進性についての説明


- ①ミラーサイクルと高圧力・高効率過給機のマッチング、無駄容積の削減により、蒸気発生量を維持しつつ、同クラストップレベルの発電効率49.5%です。
- ②当社が開発したM-RICS(燃焼診断装置)にて、直接筒内圧力を把握し燃焼制御と監視を行っています。
- ③LNG貯蔵基地で発生するBOGなどの副生ガスの使用も可能であり、運転中に発電出力や環境性能に影響することなく、燃料ガスの切替ができます。
- ④単筒試験機にて水素混焼50vo1%までの燃焼試験を完了しました。

発電効率重視仕様KU30GSIは、最新の効率向上技術を適用し高い発電効率を実現しています。


		12KU30GSI		14KU30GSI		16KU30GSI		18KU30GSI	
周波数	Hz	60	50	60	50	60	50	60	50
シリンダ数		12 14			16		18		
シリンダ径×ピストン行程	mm	300×380							
回転数	min ⁻¹	720	750	720	750	720	750	720	750
定格出力(発電端)	kW	3,650	3,800	4,250	4,450	4,900	5,100	5,500	5,750
機関重量	ton	40 48		54		60			
NOx	ppm	320(O2:0%換算)以下							

1 NOx=200ppm対応も可能です。2 環境条件、ブラントの仕様構成、燃料性状により、数値が変更となる場合があります。詳細は弊社までお問い合わせください。

	単位:mm					
	A	В	С	D		
12KU30GSI	9,850	3,180	4,980	2,380		
14KU30GSI	10,390	3,180	4,980	2,380		
16KU30GSI	10,930	3,180	4,980	2,380		
18KU30GSI	11,470	3,180	4,980	2,380		

導入事例の概要・イメージ図

